## Functional equation

## Solving process:

i) "It", which is in brackets replace with $t$ (replacement)
ii) From there, express $x$
iii) Back in the starting equation, $f(t)=\ldots$ and where you see $x$ replace it with what we have expressed
iv) Simplify that term, who is now all "by t " and replace $\mathbf{t}$ with $\mathbf{x}$

## EXAMPLES:

1) Solve the functional equation: $f(x+1)=x^{2}-3 x+2$

## Solution:

$f(x+1)=x^{2}-3 x+2 \quad$ "It", which is in brackets replace with $t$
$\mathrm{x}+1=\mathrm{t} \quad$ From there, express x
$\mathrm{x}=\mathrm{t}-1 \quad$ Back in the starting equation, $\mathrm{f}(\mathrm{t})=\ldots$
$f(t)=(t-1)^{2}-3(t-1)+2$
$f(t)=t^{2}-2 t+1-3 t+3+2 \quad$ Simplify that term, who is now all "by $t "$
$\mathrm{f}(\mathrm{t})=\mathrm{t}^{2}-5 \mathrm{t}+6 \quad$ replace t with x
$f(x)=x^{2}-5 x+6 \longrightarrow$ final solution of the functional equation.
2) Solve the functional equation: $f\left(\frac{1}{x}\right)=x+\sqrt{1+x^{2}}$

## Solution:

$f\left(\frac{1}{x}\right)=x+\sqrt{1+x^{2}}$
$\frac{1}{x}=t$
$f(t)=\frac{1}{t}+\sqrt{1+\frac{1}{t^{2}}}$
$f(t)=\frac{1}{t}+\sqrt{\frac{t^{2}+1}{t^{2}}} \longrightarrow f(t)=\frac{1}{t}+\frac{\sqrt{t^{2}+1}}{t}$ replace $\mathbf{t}$ with $\mathbf{x} f(x)=\frac{1+\sqrt{x^{2}+1}}{x}$ is final solution
3) Solve the functional equation: $f\left(\frac{x}{x+1}\right)=x^{2}$

## Solution:

$f\left(\frac{x}{x+1}\right)=x^{2}$
$\frac{x}{x+1}=t$
$x=t(x+1)$
$\mathbf{x}=\mathbf{t} \mathbf{x}+\mathbf{t}$
$\mathrm{x}-\mathrm{tx}=\mathrm{t}$
$x(1-t)=t$
$x=\frac{t}{1-t}$
$f\left(\frac{x}{x+1}\right)=x^{2}$
$f(t)=\left(\frac{t}{1-t}\right)^{2} \quad$ replace $\mathbf{t}$ with $\mathbf{x} f(x)=\left(\frac{x}{1-x}\right)^{2}$ is final solution
4) Solve the functional equation: $f\left(\frac{x+2}{2 x+1}\right)=5 x+3$

## Solution:

$f\left(\frac{x+2}{2 x+1}\right)=5 x+3$
$\frac{x+2}{2 x+1}=t$
$x+2=t(2 x+1)$
$\mathbf{x}+\mathbf{2}=\mathbf{2 t x}+\mathbf{t}$
$\mathrm{x}-2 \mathrm{tx}=\mathrm{t}-2$
$x(1-2 t)=t-2$
$x=\frac{t-2}{1-2 t}$
$\longrightarrow f\left(\frac{x+2}{2 x+1}\right)=5 x+3$
$\mathbf{f}(\mathbf{t})=\mathbf{5} \frac{t-2}{1-2 t}+\mathbf{3}$
$\mathbf{f}(\mathbf{t})=\frac{5 t-10}{1-2 t}+\frac{3(1-2 t)}{1-2 t}=\frac{5 t-10+3-6 t}{1-2 t}=\frac{-t-7}{1-2 t}$
$\mathbf{f}(\mathbf{t})=\frac{t+7}{2 t-1}$
$\mathbf{f}(\mathbf{x})=\frac{x+7}{2 x-1} \quad$ is final solution.
5) If $f\left(\frac{x}{x+1}\right)=(x-1)^{2}$ calculate $\mathbf{f}(3)$.

## Solution:

First, we must find f(x).
$f\left(\frac{x}{x+1}\right)=(x-1)^{2}$
$\frac{x}{x+1}=t$
$x=t(x+1)$
$\mathbf{x}=\mathbf{t} \mathbf{x}+\mathbf{t}$
$\mathrm{x}-\mathrm{tx}=\mathrm{t}$
$x(1-t)=t$

$$
x=\frac{t}{1-t} \quad \longrightarrow f\left(\frac{x}{x+1}\right)=(x-1)^{2}
$$

$f(t)=\left(\frac{t}{1-t}-1\right)^{\mathbf{2}} \quad$ Now, $t$ replace with 3 , because we search $f(3) \ldots$
$\mathbf{f}(\mathbf{3})=\left(\frac{3}{1-3}-1\right)^{\mathbf{2}}=\frac{25}{4}$
6) Solve the functional equation: $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}$

## Solution:

$f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}} \quad$ replacement $x+\frac{1}{x}=\mathrm{t}$, if you try from here to express x , as it should, there is a problem....
$x+\frac{1}{x}=\mathrm{t} \quad$ all multiply with $\mathrm{x} .$.
$\mathrm{x}^{2}+1=\mathrm{xt}$
$\mathrm{x}^{2}-\mathrm{xt}+1=0$ this is a square equation but does not give us a "good" solution

## What should you do?

Must use a different method:
$x+\frac{1}{x}=\mathrm{t}$
$\left(x+\frac{1}{x}\right)^{2}=\mathrm{t}^{2}$
$x^{2}+2 x \frac{1}{x}+\frac{1}{x^{2}}=t^{2}$
$x^{2}+2+\frac{1}{x^{2}}=t^{2}$
$x^{2}+\frac{1}{x^{2}}=t^{2}-2$ now back in the equation $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}$
$f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}} \longrightarrow \mathbf{f}(\mathbf{t})=\mathbf{t}^{2}-\mathbf{2} \quad$ then $\quad \mathbf{f}(\mathbf{x})=\mathbf{x}^{\mathbf{2}}-\mathbf{2} \quad$ is final solution
7) Solve the functional equation: $f\left(\frac{x+1}{x-2}\right)+2 f\left(\frac{x-2}{x+1}\right)=x$

## Solution:

This task can not do "classic" but must use a different method:

If we have replacement $\frac{x-2}{x+1}=t \quad$ then $\frac{x+1}{x-2}=\frac{1}{t}$ and from here we have:
$\mathrm{x}-2=\mathrm{t}(\mathrm{x}+1) \longrightarrow \mathrm{x}-2=\mathrm{tx}+\mathrm{t} \longrightarrow \mathrm{x}-\mathrm{tx}=\mathrm{t}+2 \longrightarrow \mathrm{x}(1-\mathrm{t})=\mathrm{t}+2 \longrightarrow \mathrm{x}=\frac{t+2}{1-t}$

## Back in the equation:

$f\left(\frac{x+1}{x-2}\right)+2 f\left(\frac{x-2}{x+1}\right)=x$
$\mathrm{f}\left(\frac{1}{t}\right)+2 \mathrm{f}(\mathrm{t})=\frac{t+2}{1-t}$ We have received new equation, trick is to place $\frac{1}{t}$ instead of t .
$\mathrm{f}(\mathrm{t})+2 \mathrm{f}\left(\frac{1}{t}\right)=\frac{\frac{1}{t}+2}{1-\frac{1}{t}}=\frac{\frac{1+2 t}{t}}{\frac{t-1}{t}}=\frac{1+2 t}{t-1}$
Now make the system of this two equations:
$\mathrm{f}\left(\frac{1}{t}\right)+2 \mathrm{f}(\mathrm{t})=\frac{t+2}{1-t}$
$2 \mathrm{f}\left(\frac{1}{t}\right)+\mathrm{f}(\mathrm{t})=\frac{1+2 t}{t-1}$
Multiply the first equation with -2 and gather these two equations ...
$-4 \mathrm{f}(\mathrm{t})-2 \mathrm{f}\left(\frac{1}{t}\right)=-2 \frac{t+2}{1-t}$
$\mathrm{f}(\mathrm{t})+2 \mathrm{f}\left(\frac{1}{t}\right)=\frac{1+2 t}{t-1}$
$-3 \mathrm{f}(\mathrm{t})=\frac{-2 t-4}{1-t}+\frac{1+2 t}{t-1}=\frac{2 t+4}{t-1}+\frac{1+2 t}{t-1}=\frac{4 t+5}{t-1}$
So: $-3 \mathrm{f}(\mathrm{t})=\frac{4 t+5}{t-1}$
$\mathrm{f}(\mathrm{t})=\frac{4 t+5}{-3(t-1)} \longrightarrow \mathrm{f}(\mathrm{t})=\frac{4 t+5}{3-3 t} \quad$ replace t with x

$$
f(x)=\frac{4 x+5}{3-3 x} \text { is final solution }
$$

